Presentation Name: Estimation of a noisy subordinated Brownian Motion via two-scales power variations
Presenter: Professor Kiseop Lee
Date: 2018-06-01
Location: 光华东主楼1501
Abstract:

High frequency based estimation methods for a semiparametric pure-jump sub- ordinated Brownian motion exposed to a small additive microstructure noise are developed building on the two-scales realized variations approach originally developed by Zhang et al. (2005) for the estimation of the integrated variance of a continuous Itˆo process. The proposed estimators are shown to be robust against the noise and, surprisingly, to attain better rates of convergence than their precursors, method of moment estimators, even in the absence of microstructure noise. Our main results give approximate optimal values for the number K of regular sparse subsamples to be used, which is an important tune-up parameter of the method. Finally, a data-driven plug-in procedure is devised to implement the proposed estimators with the optimal K-value. The developed estimators exhibit superior performance as illustrated by Monte Carlo simulations and a real high-frequency data application. Joint work with Jos ́e E. Figueroa-Lo ́pez

海报

Annual Speech Directory: No.132

220 Handan Rd., Yangpu District, Shanghai ( 200433 )| Operator:+86 21 65642222

Copyright © 2016 FUDAN University. All Rights Reserved